Optimization Techniques In Financial Portfolio Management: A Mathematical Perspective
Main Article Content
Abstract
Traditional portfolio optimization models, such as the mean–variance framework, often fall short in addressing uncertainty, parameter estimation errors, and nonlinear investor objectives. This study provides a unified mathematical framework incorporating convex, stochastic, robust, and multi-objective optimization methods to model financial portfolios with greater theoretical rigor. The paper derives analytical conditions for the existence, uniqueness, and sensitivity of optimal solutions across formulations. A simplified symbolic example with three assets demonstrates the practical implications: increasing the risk aversion coefficient from 1 to 10 resulted in a 40% reduction in portfolio volatility, accompanied by a 15% decrease in expected return. This shift reflects a predictable yet mathematically tractable trade-off between risk minimization and return sacrifice, as governed by parameter tuning within each optimization model. The study underscores the value of mathematical generalization for improving the realism and robustness of portfolio models without relying on empirical backtesting. The comparison of model behaviors provides deep insight into the structural flexibility needed for informed financial decision-making under uncertainty. Theoretical contributions include formal derivations, comparative complexity analysis, and guidance for future integration with intelligent adaptive systems and algorithmic frameworks.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1. Bertsimas, D., & Cory-Wright, R. (2022). A scalable algorithm for sparse portfolio selection. INFORMS Journal on Computing, 34(3), 1489-1511.
2. Bertsimas, D., Gupta, V., & Kallus, N. (2018). Data-driven robust optimization. Mathematical Programming, 167(2), 235-292.
3. Blanchet, J., Chen, L., & Zhou, X. Y. (2022). Distributionally robust mean-variance portfolio selection with Wasserstein distances. Management science, 68(9), 6382-6410.
4. Caccioli, F., Kondor, I., & Papp, G. (2018). Portfolio optimization under expected shortfall: contour maps of estimation error. Quantitative Finance, 18(8), 1295-1313.
5. Georgantas, A., Doumpos, M., & Zopounidis, C. (2024). Robust optimization approaches for portfolio selection: a comparative analysis. Annals of Operations Research, 339(3), 1205-1221.
6. Hwang, I., Xu, S., & In, F. (2018). Naive versus optimal diversification: Tail risk and performance. European Journal of Operational Research, 265(1), 372-388.
7. Jiang, L., Wu, C., & Wang, S. (2023). Distributionally robust multi-period portfolio selection subject to bankruptcy constraints. Journal of Industrial and Management Optimization, 19(2), 1044-1057.
8. Kim, J. H., Kim, W. C., Kwon, D. G., & Fabozzi, F. J. (2018). Robust equity portfolio performance. Annals of Operations Research, 266(1), 293-312.
9. La Torre, D., Mendivil, F., & Rocca, M. (2024). Modeling portfolio efficiency using stochastic optimization with incomplete information and partial uncertainty. Annals of Operations Research, 334(1), 241-263.
10. Le Courtois, O., & Xu, X. (2024). Efficient portfolios and extreme risks: a Pareto–Dirichlet approach. Annals of Operations Research, 335(1), 261-292.
11. Liesiö, J., Xu, P., & Kuosmanen, T. (2020). Portfolio diversification based on stochastic dominance under incomplete probability information. European Journal of Operational Research, 286(2), 755-768.
12. Lotfi, S., & Zenios, S. A. (2018). Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances. European Journal of Operational Research, 269(2), 556-576.
13. Lotfi, S., Pagliardi, G., Paparoditis, E., & Zenios, S. A. (2025). Hedging political risk in international portfolios. European Journal of Operational Research, 322(2), 629-646.
14. Petchrompo, S., Wannakrairot, A., & Parlikad, A. K. (2022). Pruning Pareto optimal solutions for multi-objective portfolio asset management. European Journal of Operational Research, 297(1), 203-220.
15. Platanakis, E., Sutcliffe, C., & Ye, X. (2021). Horses for courses: Mean-variance for asset allocation and 1/N for stock selection. European Journal of Operational Research, 288(1), 302-317.
16. Post, T., Karabatı, S., & Arvanitis, S. (2018). Portfolio optimization based on stochastic dominance and empirical likelihood. Journal of Econometrics, 206(1), 167-186.
17. Sehgal, R., Sharma, A., & Mansini, R. (2023). Worst-case analysis of Omega-VaR ratio optimization model. Omega, 114, 102730.
18. Senescall, M., & Low, R. K. Y. (2024). Quantitative Portfolio Management: Review and Outlook. Mathematics, 12(18), 2897.
19. Takano, Y., & Gotoh, J. Y. (2023). Operations Research Perspectives. Operations Research, 10, 100262.
20. Taylor, J. W. (2022). Forecasting value at risk and expected shortfall using a model with a dynamic omega ratio. Journal of Banking & Finance, 140, 106519.
21. Waga, M., Valladão, D., & Street, A. (2025). Robust portfolio optimization meets Arbitrage Pricing Theory. European Journal of Operational Research.
22. Xidonas, P., Steuer, R., & Hassapis, C. (2020). Robust portfolio optimization: a categorized bibliographic review. Annals of Operations Research, 292(1), 533-552.
23. Yanıkoğlu, İ., Gorissen, B. L., & den Hertog, D. (2019). A survey of adjustable robust optimization. European Journal of Operational Research, 277(3), 799-813.
24. Zhao, H., Jiang, Y., & Yang, Y. (2023). Robust and Sparse Portfolio: Optimization Models and Algorithms. Mathematics, 11(24), 4925.
25. Zhou-Kangas, Y., & Miettinen, K. (2019). Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality. O